get_clean_posterior.RdThis function filters and processes posterior samples from RJMCMC outputs based on a specified mixture size. It generates clean posterior summaries and the trajectory of the posterior distribution.
get_clean_posterior(outputs, mix_size, n_chain)A list containing two components:
summary_post: A data frame summarizing the posterior samples with columns:
p (mixing proportions), mu (means), sigma (standard deviations),
order (ranked means), sample (sample index), and chain (chain index).
post_traj_sum: A data frame summarizing the posterior trajectory, including mean
and uncertainty intervals (mean_qi).
The function filters jump matrices for samples matching the specified mix_size (number of components).
It constructs a clean summary of posterior parameters and calculates the posterior trajectory
using a sequence of x-values (e.g., for visualization of the mixture distribution).
Steps:
Filter Samples:
Selects jump matrices with mix_size columns.
Extracts parameters: mixing proportions (p), means (mu), and standard deviations (sigma).
Generate Posterior Trajectory:
Uses the filtered posterior parameters to calculate the PDF of the mixture distribution over a range of x-values.
Aggregates the trajectories across samples using mean_qi() to summarize uncertainty.